Learning Word Representations from Relational Graphs
نویسندگان
چکیده
Attributes of words and relations between two words are central to numerous tasks in Artificial Intelligence such as knowledge representation, similarity measurement, and analogy detection. Often when two words share one or more attributes in common, they are connected by some semantic relations. On the other hand, if there are numerous semantic relations between two words, we can expect some of the attributes of one of the words to be inherited by the other. Motivated by this close connection between attributes and relations, given a relational graph in which words are interconnected via numerous semantic relations, we propose a method to learn a latent representation for the individual words. The proposed method considers not only the co-occurrences of words as done by existing approaches for word representation learning, but also the semantic relations in which two words co-occur. To evaluate the accuracy of the word representations learnt using the proposed method, we use the learnt word representations to solve semantic word analogy problems. Our experimental results show that it is possible to learn better word representations by using semantic semantics be-
منابع مشابه
Towards Holistic Concept Representations: Embedding Relational Knowledge, Visual Attributes, and Distributional Word Semantics
Knowledge Graphs (KGs) effectively capture explicit relational knowledge about individual entities. However, visual attributes of those entities, like their shape and color and pragmatic aspects concerning their usage in natural language are not covered. Recent approaches encode such knowledge by learning latent representations (‘embeddings’) separately: In computer vision, visual object featur...
متن کاملJoint Word Representation Learning Using a Corpus and a Semantic Lexicon
Methods for learning word representations using large text corpora have received much attention lately due to their impressive performance in numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection. Despite their success, these datadriven word representation learning methods do not consider the rich semantic relational structure betw...
متن کاملAnalogical Word Sense Disambiguation
Word sense disambiguation is an important problem in learning by reading. This paper introduces analogical word-sense disambiguation, which uses human-like analogical processing over structured, relational representations to perform word sense disambiguation. Cases are automatically constructed using representations produced via natural language analysis of sentences, and include both conceptua...
متن کاملTowards a Unified Framework for Transfer Learning: Exploiting Correlations and Symmetries
Recent work has shown that neuralembedded word representations capture many relational similarities, which can be recovered by means of vector arithmetic in the embedded space. We show that Mikolov et al.’s method of first adding and subtracting word vectors, and then searching for a word similar to the result, is equivalent to searching for a word that maximizes a linear combination of three p...
متن کاملWord Type Effects on L2 Word Retrieval and Learning: Homonym versus Synonym Vocabulary Instruction
The purpose of this study was twofold: (a) to assess the retention of two word types (synonyms and homonyms) in the short term memory, and (b) to investigate the effect of these word types on word learning by asking learners to learn their Persian meanings. A total of 73 Iranian language learners studying English translation participated in the study. For the first purpose, 36 freshmen from an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015